Help A Ford Lover Save His Mustang!!!! Please Help Me

RotaryStang

New Member
Jan 5, 2012
1
0
1
So it started about a month ago. My car was doing random stuff driving me nuts. hesitate to start, stall then not start. Sometimes not start at all. Then some days it would start like no problem? So one day when im leaving my GF's house im driving along and bam loud ass backfire. Then about 10 seconds later the car stalls and wont start at all. So i get my buddy to tow me to his house where he has a lift. We jack it up hit the starter with a rubber hammer and walah starts right away! So that solves the starting issue but not the backfire or random stalling? I do a little research and find a common suspect is the ICM. So I buy one at autozone $30 i see no harm. Cheap and lifetime warranty! Pop that in and its great no backfire or stalling. But That day i ordered an accel ICM online for more power. My buddy talked me into it. So that comes in the mail. I pop it in and its great! way more power, Way smoother idle and clims through the gears way smoother and responsive. BUT!! two days later the hiccups start. Getting worse and worse as the days go by. Til the point where its lugging real bad. So i bring it back over to my buddys we hook the obd1 up to her and it throws 15, 67, 95x2, 18, 29, 66, and 85. These codes were done with the car on but engine not running. Now keep in mind my car is a 88' with maf conversion, b cam, and a few bolt ons. It is a 302 out of a 97 mecury mountaineer but has e7 heads and stock foxbody intake manifold. I rebuilt it last winter and she ran fine until now. After doing changing the ICM iv put on a brand new egr and sensor, IAC sensor, ECT sensor and sending unit, ACT sensor, fuel pump, and plug wires. On top of that alternator, battery and cables, ignition coil, sparkplugs, oil, fuel filter, and vacuum lines are all brand new. Im running out of ideas here guys. Last night i cleaned the maf and didnt do :poo:. I also noticed that when i unplug the maf or IAC with it running it dosent do anything, which would have to mean its running on stored history right!? When i start it cold it idles high for a sec then comes to early and struggles to idle til it warms up. I though the ECT would fix that but nope. Do all cammed 302's do that? I checked the fuel pressure and it was at 40. I lowered it to 33 and it made it worse under driving conditions. I put it back to forty and it ran a little better. When im driving at about 2500rpms the fuel reads around 31 but if i punch the gas it rockets to 40 where its set at. Could my fuel regulator be bad? I think i might buy a stock regulator to see what it does. I havent ran the obd1 scanner since i put in the new fuel pump. Today i plan on swapping in another computer and trying another maf unit. Im at wits end and im leaning more toward selling the car because i cant figure out the problem!!! Please help a ford guy save his mustang.

After this video was shot i changed the fuel pump and it didnt do anything. The water temp reads that because i hadnt changed the ECT sensor yet. now it reads fine.
 
  • Sponsors (?)


The fuel pressure regulator in 5.0 Mustangs is a shunt regulator that works in parallel with the fuel injection system. The regulator bypasses fuel back to the tank to maintain a constant 39 PSI to the injector tips. A constant pressure insures that the computer will always have the same flow rate to base its calculations on.

The 39 PSI pressure is measured at 29.92 inches of atmospheric pressure to get the proper flow rate. But the pressure inside the intake manifold may be higher or lower than the atmospheric pressure outside the intake manifold. These differences would cause the flow rate to change and mess up the computer’s air/fuel calculations.

As the vacuum inside the intake manifold increases, the effective pressure at the injector tips increases. Conversely, as vacuum inside the manifold decreases, the effective pressure at the injector tip decreases.

Some math to illustrate the effect:
39 PSI at 20” of vacuum inside the manifold works out to be 49 PSI,
since the 20 “ vacuum/2 = 10 PSI that you add to the base fuel pressure.
That gives you 49 PSI at the injector tip.
39 PSI at 5” of vacuum inside the manifold works out to be 41.5 PSI,
Since 5” vacuum/2 = 2.5 PSI that you add to the base fuel pressure
That gives you 41.5 PSI at the injector tip
39 PSI with 10 lbs of boost inside the manifold works out to be 29 PSI.
That gives you 29 PSI at the injector tip
That reduces the flow rate and explains the need for higher pressures on engines with pressurized induction.

Since intake manifold vacuum and pressure plays havoc with the pressure at the injector tips, what has to be done to get it back in the magic 39 PSI range? That’s where vacuum applied to the back side of the fuel pressure regulator comes in. Remember this: unless you have some really poorly designed or trick plumbing, vacuum is the same throughout the engine’s vacuum system.
Apply 20” of vacuum to the back of the regulator and the 49 PSI at 20” of vacuum at the injector tips drops to 39 PSI.
Apply 5” of vacuum to the back of the regulator and the 41.5 PSI at 5” of vacuum at the injector tips drops to 39 PSI.
Here’s another side effect: apply 10 PSI boost pressure to he back of the regulator and the normal 39 PSI at the injector tips increases to 49 PSI. Pretty clever of these engineers to use intake manifold vacuum and pressure that way.

Simply stated, intake manifold vacuum adds to the effective fuel pressure at the injector tips. Apply the same vacuum to the back side of the fuel pressure regulator, and everything balances out. Add pressure to the intake manifold and the effective fuel pressure at the injector tip decreases. Apply the same pressure to the back side of the fuel pressure regulator, and everything balances out.

Now you know why to disconnect the vacuum when making fuel pressure measurements.


Fixing your current problems:
Start by fixing the codes, they are the known problems.

Code 15 - No Keep Alive Memory power to PCM pin 1 or bad PCM (Memory Test
Failure). The voltage to the Keep Alive Memory (KAM) is missing (wiring problem)
or the KAM is bad. The KAM holds all of the settings that the computer "learns" as
it operates and all the stored error codes that are generated as a result of
something malfunctioning while the engine is running. Use a voltmeter to check
the voltage to the pin 1 on the computer - you should always have 12 volts. No
constant 12 volts = bad wiring. If you do always have the 12 volts, then the KAM is
bad and the computer is faulty.

If the computer has to "relearn" all the optimum settings every time it powers up,
the initial 5-30 minutes of operation may exhibit surges, poor low speed performance,
and rough idle.

Note that some aftermarket chips will cause code 15 to set. Remove the chip,
clear the codes and retest.


Before replacing the computer, remove the battery ground cable for about 20
minutes. This will clear all the codes. Retest after several days of running. If the 15
code is gone, then don't worry about it. If it is still there, then you get to do some
troubleshooting.

See the following website for some help from Tmoss (diagram designer) & Stang&2
Birds (website host) for help on 88-95 wiring http://www.veryuseful.com/mustang/tech/engine/

Diagram courtesy of Tmoss & Stang&2birds
88-91_5.0_EEC_Wiring_Diagram.gif



Code 18 - SPOUT out or wiring fault - look for short to ground in SPOUT wiring going
back to the computer. Possible bad TFI or defective 22 K resistor in the IDM wiring

This code can disable spark advance and reduce power and fuel economy.

Remove the passenger side kick panel and disconnect the computer connector.
There is a 10 MM bolt that holds it in place.
Disconnect the TFI module connector from the TFI and the measure the resistance between the yellow/lt green wire and ground.
You should see greater than 100 K (100000) ohms.
Check the resistance from Pin 4 on the computer connector (dark green/yellow) and the dark green/yellow wire on the TFI connector. You should see 20-24 K Ohms (20,000-24,0000 ohms). The resistor is located in the wiring harness about 6” from the connector. You will need solder and heat shrink to replace the resistor if it is bad.
Next measure the resistance between the yellow/lt green wire on the TFI module connector and
Pin 36 on the computer connector. With the SPOUT plug in place, you should see less than 2 ohms.

The following is a view from the computer side of the computer connector.
eec04.gif


This diagram is the wire side of the computer connector.
a9x-series-computer-connector-wire-side-view-gif.71316


Diagram courtesy of Tmoss & Stang&2birds

88-91_5.0_EEC_Wiring_Diagram.gif




If the computer has to "relearn" all the optimum settings every time it powers up,
the initial 5-30 minutes of operation may exhibit surges, poor low speed performance,
and rough idle.

Note that some aftermarket chips will cause code 15 to set. Remove the chip,
clear the codes and retest.


Before replacing the computer, remove the battery ground cable for about 20
minutes. This will clear all the codes. Retest after several days of running. If the 15
code is gone, then don't worry about it. If it is still there, then you get to do some
troubleshooting.

See the following website for some help from Tmoss (diagram designer) & Stang&2
Birds (website host) for help on 88-95 wiring http://www.veryuseful.com/mustang/tech/engine/

Diagram courtesy of Tmoss & Stang&2birds
88-91_5.0_EEC_Wiring_Diagram.gif


Code 29 - Vehicle Speed Sensor (VSS) is an electronic sender mounted on the speedo pickup gear on the trans. It works the cruse control for both 5 speed and auto trans cars. The VSS is used to tell the computer to speed up the idle as you slow to a stop. This helps keep the engine from stalling when you slow down for a stop sign or stop light.
Check to see if the electrical connector is plugged into it. Clean the connector & contacts with non flammable brake parts cleaner prior to replacing the sensor, as that may fix the problem. The sensor cost is under $30 and it is easy to replace.

Code 66 MAF below minimum test voltage.
Insufficient or no voltage from MAF. Dirty MAF element, bad MAF, bad MAF wiring, missing power to MAF. Check for missing +12 volts on this circuit. Check the two links for a wiring diagram to help you find the red wire for computer power relay switched +12 volts. Check for 12 volts between the red and black wires on the MAF heater (usually pins A & B). while the connector is plugged into the MAF. This may require the use of a couple of safety pins to probe the MAF connector from the back side of it.

There are three parts in a MAF: the heater, the sensor element and the amplifier. The heater heats the MAF sensor element causing the resistance to increase. The amplifier buffers the MAF output signal and has a resistor that is laser trimmed to provide an output range compatible with the computer's load tables.

The MAF element is secured by 2 screws & has 1 wiring connector. To clean the element, remove it from the MAF housing and spray it down with electronic parts cleaner or non-inflammable brake parts cleaner (same stuff in a bigger can and cheaper too).

Changes in RPM causes the airflow to increase or decease, changing the voltage output.. The increase of air across the MAF sensor element causes it to cool, allowing more voltage to pass and telling the computer to increase the fuel flow. A decrease in airflow causes the MAF sensor element to get warmer, decreasing the voltage and reducing the fuel flow.

Measure the MAF output at pins C & D on the MAF connector (dark blue/orange and tan/light blue) or at pins 50 & 9 on the computer. Be sure to measure the sensor output by measuring across the pins and not between the pins and ground.

At idle = approximately .6 volt
20 MPH = approximately 1.10 volt
40 MPH = approximately 1.70 volt
60 MPH = approximately 2.10 volt

Check the resistance of the MAF signal wiring. Pin D on the MAF and pin 50 on the computer (dark blue/orange wire) should be less than 2 ohms. Pin C on the MAF and pin 9 on the computer (tan/light blue wire) should be less than 2 ohms.

There should be a minimum of 10K ohms between either pin C or D on the MAF wiring connector and pins A or B. Make your measurement with the MAF disconnected from the wiring harness.




Code 67 –
Revised 5 Jan 2012 to add warning of possible idle surge condition due to code 67

Cause of problem:
clutch not depressed (5 speed) or car not in neutral or park (auto) or A/C in On position when codes where dumped. Possible neutral safety switch or wiring problem. This code may prevent you from running the Key On Engine On tests. External evidence from other sources claims that a code 67 can cause an idle surge condition. Do try to find and fix any issues with the switch and wiring if you get a code 67.

The computer wants to make sure the A/C is off due to the added load on the engine for the engine running tests. It also checks to see that the transmission is in Neutral and the clutch depressed (T5, T56, Tremec 3550 & TKO)). This prevents the diagnostics from being run when the car is driven. Key On Engine Running test mode takes the throttle control away from the driver for several tests. This could prove hazardous if the computer was jumpered into test mode and then driven.

The following is for 5 speed cars only.
The NSS code 67 can be bypassed for testing. You will need to temporarily ground computer pin 30 to the chassis. Computer pin 30 uses a Lt blue/yellow wire. Remove the passenger side kick panel and then remove the plastic cover from the computer wiring connector. Use a safety pin to probe the connector from the rear. Jumper the safety pin to the ground near the computer.
Be sure to remove the jumper BEFORE attempting to drive the car!!!


Code 85 - CANP solenoid - The Carbon Canister solenoid is inoperative or missing. Check vacuum lines for leaks and cracks. Check electrical wiring for loose connections, damaged wiring and insulation. Check solenoid valve operation by grounding the gray/yellow wire to the solenoid and blowing through it.
The computer provides the ground for the solenoid. The red wire to the solenoid is always energized any time the ignition switch is in the run position.

Charcoal canister plumbing - one 3/8" tube from the bottom of the upper manifold to the rubber hose. Rubber hose connects to one side of the canister solenoid valve. Other side of the solenoid valve connects to one side of the canister. The other side of the canister connects to a rubber hose that connects to a line that goes all the way back to the gas tank. There is an electrical connector coming from the passenger side injector harness near #1 injector that plugs into the canister solenoid valve. It's purpose is to vent the gas tank. The solenoid valve opens at cruse to provide some extra fuel. The canister is normally mounted on the passenger side frame rail near the smog pump pulley.

attachment.php


It does not weigh but a pound or so and helps richen up the cruse mixture. It draws no HP & keeps the car from smelling like gasoline in a closed garage. So with all these good things and no bad ones, why not hook it up & use it?


The purge valve solenoid connector is a dangling wire that is near the ECT sensor and oil filler on the passenger side rocker cover. The actual solenoid valve is down next to the carbon canister. There is about 12"-16" of wire that runs parallel to the canister vent hose that comes off the bottom side of the upper intake manifold. That hose connects one port of the solenoid valve; the other port connects to the carbon canister.

The purge valve solenoid should be available at your local auto parts store.

Purge valve solenoid:
6



The carbon canister is normally mounted on the passenger side frame rail near the smog pump pulley.
Carbon Canister:
getimage.php



Code 95 Key On, Engine not Running - the following test path is for 86-90 model Mustangs.

The 95 code is because at one time or another, the fuel pump relay hiccupped and didn't provide power the pump when the computer told it to run. Sometimes this is a one time thing, other times it is a no run or runs poorly condition.

attachment.php


Using the diagram, check the red/black wire from the fuel pump relay: you should see 12 volts or so. If not, check the inertia switch: on a hatch it is on the driver’s side by the taillight. Look for a black rubber plug that pops out: if you don't find it, then loosen up the plastic trim. Check for voltage on both sides of the switch. If there is voltage on both sides, then check the Pink/black wire on the fuel pump relay: it is the power feed to the fuel pump. No voltage there, check the Orange/Lt blue wire, it is the power feed to the fuel pump relay & has a fuse link in it. If there is good voltage there & at the Pink/black wire, swap the relay.

Some Mass Air conversions neglect to run the extra fuel pump wire, and they always have a 95 code. See http://www.stangnet.com/tech/maf/massairconversion.html for more information on the Mass Air wiring conversion.

See the following website for some help from Tmoss (diagram designer) & Stang&2Birds (website host) for help on 88-95 wiring http://www.veryuseful.com/mustang/tech/engine/ Everyone should bookmark this site.

Ignition switch wiring
http://www.veryuseful.com/mustang/tech/engine/images/IgnitionSwitchWiring.gif

Fuel, alternator, A/C and ignition wiring
http://www.veryuseful.com/mustang/tech/engine/images/fuel-alt-links-ign-ac.gif

Complete computer, actuator & sensor wiring diagram for 88-91 Mass Air Mustangs
http://www.veryuseful.com/mustang/tech/engine/images/88-91_5.0_EEC_Wiring_Diagram.gif

Complete computer, actuator & sensor wiring diagram for 91-93 Mass Air Mustangs
http://www.veryuseful.com/mustang/tech/engine/images/91-93_5.0_EEC_Wiring_Diagram.gif

Vacuum diagram 89-93 Mustangs
http://www.veryuseful.com/mustang/tech/engine/images/mustangFoxFordVacuumDiagram.jpg

HVAC vacuum diagram
http://www.veryuseful.com/mustang/tech/engine/images/Mustang_AC_heat_vacuum_controls.gif

TFI module differences & pinout
http://www.veryuseful.com/mustang/tech/engine/images/TFI_5.0_comparison.gif

Fuse box layout
http://www.veryuseful.com/mustang/tech/engine/images/MustangFuseBox.gif