Engine 90' Mustang Loss Of Power/runs Rough

jvmagic

New Member
Jul 28, 2015
27
1
3
Hi,

My 90 Mustang had been sitting for the last 5-6 years (every other week I would start the car and let idle for 15-20 minutes and drive down the street). The car has always ran very well (89k original miles). It is pretty much stock except the exhaust. The car has had an off-road x-pipe for quite a few years and I swap when I take the car in for smog (CA). A few weeks ago and swapped for the stock h-pipe and the car seemed to drive as usual (took it for a spin a few times).

The car does seem to have a bit of a hard time starting (takes 2-3 cranks; 3-5 seconds) before it starts.

I decided to take the car to get smogged so I can start driving it a lot more often. The smog check failed..... not terribly but it failed (see attachment). I put Chevron supreme fuel and drove it for 30 minutes prior to the smog check. When I got to the shop and shut the car down, the smog tech had a hard time starting the car (3 cranks 3-5 seconds long). It seems like the exhaust doesn't flow well (hard to explain). Like it's not breathing well.

I performed a tuneup about 3 years ago (plugs/cap/rotor) and have only driven the car 200 miles or less after the tune up.

I checked the timing and its still sitting at 12. TPS setting was .58v or something like that so I moved it and got it to .85v. It feels to be running the same. I had it out for 30 minutes on the highway this morning hoping it would burn the cobwebs etc.

Does it need more "driving" time? Could it be my h-pipe? No codes.

I removed the spark plugs and they seem ok (gap at .48~).

What else can I look for?

Thanks in advance. smog check 03.2017.JPG
 
  • Sponsors (?)


Does it run better with the x pipe on it? Might be your cats you swap back on it are plugged. Have you checked the codes? Are you switching o2 sensors as well when you put the old exhaust on it?
 
No guessing, no maybes, here's what you need to do:

How to pass emissions testing:

High NO - high combustion temps - retard timing, check EGR for operation.
High CO – Rich condition - fuel pressure too high, check O2 sensors, replace air filter, Clean MAF element.
High HC – Lean misfire, vacuum leak, common misfire due to worn or weak ignition system components. On rare occasions, an overly rich mixture may be the cause. Do the ethanol/E10 fill up as suggested.
High CO & HC - Cat converters, smog pump, and smog pump controls. Make sure the smog pump has good air output at 1200-1700 RPM

How to pass emissions testing:

1.) Make sure all the emissions gear the car was made with is present and connected up properly. That includes a working smog pump and cats. The smog tech will do a visual check to make sure that all the original equipment is present and connected up.

2.) Make sure that you have fresh tune up with spark plugs, plug wires, cap, rotor, fuel & air filters. An oil & filter change is a good idea while you are at it.

3.) [Dumping the computer diagnostic codes on 86-95 Mustangs

Revised 26-July-2011. Added need to make sure the clutch is pressed when dumping codes.

Codes may be present even if the check engine light hasn’t come on, so be sure to check for them.

Here's the way to dump the computer codes with only a jumper wire or paper clip and the check engine light, or test light or voltmeter. I’ve used it for years, and it works great. You watch the flashing test lamp or Check Engine Light and count the flashes.

Post the codes you get and I will post 86-93 model 5.0 Mustang specific code definitions and fixes. I do not have a complete listing for 94-95 model 5.0 Mustangs at this time.

Be sure to turn off the A/C, and put the transmission in neutral when dumping the codes. On a manual transmission car, be sure to press the clutch to the floor.
Fail to do this and you will generate a code 67 and not be able to dump the Engine Running codes.

Underhoodpictures007-01.jpg


Underhoodpictures010.jpg


If your car is an 86-88 stang, you'll have to use the test lamp or voltmeter method. There is no functional check engine light on the 86-88's except possibly the Cali Mass Air cars.

attachment.php?attachmentid=58312&stc=1&d=1242744354%20.gif
The STI has a gray connector shell and a white/red wire. It comes from the same bundle of wires as the self test connector.

89 through 95 cars have a working Check Engine light. Watch it instead of using a test lamp.

attachment.php


The STI has a gray connector shell and a white/red wire. It comes from the same bundle of wires as the self test connector.


WARNING!!! There is a single dark brown connector with a black/orange wire. It is the 12 volt power to the under the hood light. Do not jumper it to the computer test connector. If you do, you will damage the computer.

What to expect:
You should get a code 11 (two single flashes in succession). This says that the computer's internal workings are OK, and that the wiring to put the computer into diagnostic mode is good. No code 11 and you have some wiring problems. This is crucial: the same wire that provides the ground to dump the codes provides signal ground for the TPS, EGR, ACT and Map/Baro sensors. If it fails, you will have poor performance, economy and driveablity problems

Some codes have different answers if the engine is running from the answers that it has when the engine isn't running. It helps a lot to know if you had the engine running when you ran the test.
Trouble codes are either 2 digit or 3 digit, there are no cars that use both 2 digit codes and 3 digit codes.

Your 86-88 5.0 won't have a working Check Engine Light, so you'll need a test light.
See AutoZone Part Number: 25886 , $10
4




Alternate methods:
For those who are intimidated by all the wires & connections, see Actron® for what a typical hand scanner looks like. Normal retail price is about $30 or so at AutoZone or Wal-Mart.

Or for a nicer scanner see www.midwayautosupply.com/Equus-Digital-Ford-Code-Reader/dp/B000EW0KHW Equus - Digital Ford Code Reader 3145.
It has a 3 digit LCD display so that you don’t have to count flashes or beeps.. Cost is $22-$36.
Order it at Walmart for a better price and free shipping
41P3GQVDSHL._SS270_.jpg



Dumping the Engine Running codes: The procedure is the same; dump the codes with the engine not running then, you start the engine with the test jumper in place. Be sure the A/C is off, clutch depressed to the floor and the transmission is in neutral. You'll get an 11, then a 4 and the engine will speed up to do the EGR test. After the engine speed decreases back to idle, it will dump the engine running codes.

Cylinder balance test

If you have idle or IAC/IAB problems and the engine will not idle on its own without mechanically adjusting the base idle speed above 625-750 RPM, this test will fail with random cylinders pointed out every time it runs. The IAC/IAB must be capable of controlling the engine speed to run in the 1300-1500 RPM range. Playing with the base idle speed by adjusting it upwards will not work, the computer has to be able to control the engine speed using the IAC/IAB.

Warm the car's engine up to normal operating temperature. With the test jumper in test position, start the engine and let it stabilize. It should flash a 10 and then a 4 and maybe an 11. If no 11, then there are other codes that will be dumped.
One of the first tests it does is to open the EGR all the way, this will cause the engine to stumble and almost die. If the engine dies here then you have EGR problems.

To start the cylinder balance test, briefly floor the accelerator past 2500 RPM and let off the accelerator. The engine will stabilize at about 1300-1450 RPM and the cut off the fuel injectors one at a time. The engine speed will drop briefly and the computer will turn the fuel injector for the cylinder under test back on. Then it starts the process for the next cylinder. When it has sequenced through all 8 injectors, it will flash 9 for everything OK, or the number of the failing cylinder such as 2 for cylinder #2. Quickly pressing the throttle again up to 2500 RPM’s will cause the test to re-run with smaller qualifying figures.
Do it a third time, and if the same cylinder shows up, the cylinder is weak and isn’t putting out power like it should. See the Chilton’s Shop manual for the complete test procedure

See
View: https://www.youtube.com/watch?v=HDXrkKS4jTE
for a visual tour through the process. There is no voice narration so you have to listen carefully for the engine sounds.




4.) Post the codes and get help to fix them. Don’t try to pass with codes not fixed. Clearing the computer just temporarily removes them from memory, it doesn’t fix the problem that caused the code to be set.

5.) Be sure to do the testing on a hot engine. Drive for 15-20 minutes prior to taking the test to get operating temps up into the normal range. Do not shut off the engine while waiting for your turn on the test machine. An engine up to full operating temperature puts out fewer emissions.
 
Last edited:
Does it run better with the x pipe on it? Might be your cats you swap back on it are plugged. Have you checked the codes? Are you switching o2 sensors as well when you put the old exhaust on it?
It did run better with the x-pipe but it also ran well with the OEM h-pipe (for a week or so after the install). I have not checked for codes (no CEL as of right now). Yes, I'm switching the o2 sensors when switching pipes.
 
No guessing, no maybes, here's what you need to do:

How to pass emissions testing:

High NO - high combustion temps - retard timing, check EGR for operation.
High CO – Rich condition - fuel pressure too high, check O2 sensors, replace air filter, Clean MAF element.
High HC – Lean misfire, vacuum leak, common misfire due to worn or weak ignition system components. On rare occasions, an overly rich mixture may be the cause. Do the ethanol/E10 fill up as suggested.
High CO & HC - Cat converters, smog pump, and smog pump controls. Make sure the smog pump has good air output at 1200-1700 RPM

How to pass emissions testing:

1.) Make sure all the emissions gear the car was made with is present and connected up properly. That includes a working smog pump and cats. The smog tech will do a visual check to make sure that all the original equipment is present and connected up.

2.) Make sure that you have fresh tune up with spark plugs, plug wires, cap, rotor, fuel & air filters. An oil & filter change is a good idea while you are at it.

3.) [Dumping the computer diagnostic codes on 86-95 Mustangs

Revised 26-July-2011. Added need to make sure the clutch is pressed when dumping codes.

Codes may be present even if the check engine light hasn’t come on, so be sure to check for them.

Here's the way to dump the computer codes with only a jumper wire or paper clip and the check engine light, or test light or voltmeter. I’ve used it for years, and it works great. You watch the flashing test lamp or Check Engine Light and count the flashes.

Post the codes you get and I will post 86-93 model 5.0 Mustang specific code definitions and fixes. I do not have a complete listing for 94-95 model 5.0 Mustangs at this time.

Be sure to turn off the A/C, and put the transmission in neutral when dumping the codes. On a manual transmission car, be sure to press the clutch to the floor.
Fail to do this and you will generate a code 67 and not be able to dump the Engine Running codes.

Underhoodpictures007-01.jpg


Underhoodpictures010.jpg


If your car is an 86-88 stang, you'll have to use the test lamp or voltmeter method. There is no functional check engine light on the 86-88's except possibly the Cali Mass Air cars.

attachment.php?attachmentid=58312&stc=1&d=1242744354%20.gif
The STI has a gray connector shell and a white/red wire. It comes from the same bundle of wires as the self test connector.

89 through 95 cars have a working Check Engine light. Watch it instead of using a test lamp.

attachment.php?attachmentid=57945&stc=1&d=1240584741.gif


The STI has a gray connector shell and a white/red wire. It comes from the same bundle of wires as the self test connector.


WARNING!!! There is a single dark brown connector with a black/orange wire. It is the 12 volt power to the under the hood light. Do not jumper it to the computer test connector. If you do, you will damage the computer.

What to expect:
You should get a code 11 (two single flashes in succession). This says that the computer's internal workings are OK, and that the wiring to put the computer into diagnostic mode is good. No code 11 and you have some wiring problems. This is crucial: the same wire that provides the ground to dump the codes provides signal ground for the TPS, EGR, ACT and Map/Baro sensors. If it fails, you will have poor performance, economy and driveablity problems

Some codes have different answers if the engine is running from the answers that it has when the engine isn't running. It helps a lot to know if you had the engine running when you ran the test.
Trouble codes are either 2 digit or 3 digit, there are no cars that use both 2 digit codes and 3 digit codes.

Your 86-88 5.0 won't have a working Check Engine Light, so you'll need a test light.
See AutoZone Part Number: 25886 , $10
4.jpg




Alternate methods:
For those who are intimidated by all the wires & connections, see Actron® for what a typical hand scanner looks like. Normal retail price is about $30 or so at AutoZone or Wal-Mart.

Or for a nicer scanner see www.midwayautosupply.com/Equus-Digital-Ford-Code-Reader/dp/B000EW0KHW Equus - Digital Ford Code Reader 3145.
It has a 3 digit LCD display so that you don’t have to count flashes or beeps.. Cost is $22-$36.
Order it at Walmart for a better price and free shipping
41P3GQVDSHL._SS270_.jpg



Dumping the Engine Running codes: The procedure is the same; dump the codes with the engine not running then, you start the engine with the test jumper in place. Be sure the A/C is off, clutch depressed to the floor and the transmission is in neutral. You'll get an 11, then a 4 and the engine will speed up to do the EGR test. After the engine speed decreases back to idle, it will dump the engine running codes.

Cylinder balance test

If you have idle or IAC/IAB problems and the engine will not idle on its own without mechanically adjusting the base idle speed above 625-750 RPM, this test will fail with random cylinders pointed out every time it runs. The IAC/IAB must be capable of controlling the engine speed to run in the 1300-1500 RPM range. Playing with the base idle speed by adjusting it upwards will not work, the computer has to be able to control the engine speed using the IAC/IAB.

Warm the car's engine up to normal operating temperature. With the test jumper in test position, start the engine and let it stabilize. It should flash a 10 and then a 4 and maybe an 11. If no 11, then there are other codes that will be dumped.
One of the first tests it does is to open the EGR all the way, this will cause the engine to stumble and almost die. If the engine dies here then you have EGR problems.

To start the cylinder balance test, briefly floor the accelerator past 2500 RPM and let off the accelerator. The engine will stabilize at about 1300-1450 RPM and the cut off the fuel injectors one at a time. The engine speed will drop briefly and the computer will turn the fuel injector for the cylinder under test back on. Then it starts the process for the next cylinder. When it has sequenced through all 8 injectors, it will flash 9 for everything OK, or the number of the failing cylinder such as 2 for cylinder #2. Quickly pressing the throttle again up to 2500 RPM’s will cause the test to re-run with smaller qualifying figures.
Do it a third time, and if the same cylinder shows up, the cylinder is weak and isn’t putting out power like it should. See the Chilton’s Shop manual for the complete test procedure

See
View: https://www.youtube.com/watch?v=HDXrkKS4jTE
for a visual tour through the process. There is no voice narration so you have to listen carefully for the engine sounds.




4.) Post the codes and get help to fix them. Don’t try to pass with codes not fixed. Clearing the computer just temporarily removes them from memory, it doesn’t fix the problem that caused the code to be set.

5.) Be sure to do the testing on a hot engine. Drive for 15-20 minutes prior to taking the test to get operating temps up into the normal range. Do not shut off the engine while waiting for your turn on the test machine. An engine up to full operating temperature puts out fewer emissions.


Thanks so much for your detailed response. I will check for codes sometime this week.

I drove the car once again this morning and it started to buck a bit and also seems like the right-side cat is making a sound (backfire). It's starting to look more like a cat issue. Do cats go bad when sitting unused for years? No guessing, I will run a diagnostic as outlined and get back to you guys. Thanks again!
 
I ran the codes with the car not running and car running.

Car not running - 11 11 13 333 (doesn't make a whole lot of sense).
Car running - 3 12 14 19 13 32 14 19 13 3

I'm attaching a video as well (car not running).

 
I ran the codes with the car not running and car running.

Car not running - 11 11 13 333 (doesn't make a whole lot of sense).
Car running - 3 12 14 19 13 32 14 19 13 3

I'm attaching a video as well (car not running).


The code dump is a jumble, but II will post what I can decipher in numerical order...


Code 12 -Idle Air Bypass motor not controlling idle properly (generally idle too low) - IAB dirty or not working. Clean the electrical contacts with non flammable brake parts cleaner at the same time.

IAC doesn't work: look for +12 volts at the IAC red wire. Then check for continuity between the white/lt blue wire and pin 21 on the computer. The IAC connector contacts will sometimes corrode and make the IAC not work. The red wire on the IAC is always hot with the engine in run mode. The computer provides a ground for the current for the IAC. It switches the ground on and off, making a square wave with a varying duty cycle. A normal square wave would be on for 50% of the time and off for 50% of the time. When the idle speed is low, the duty cycle increases more than 50% to open the IAC more. When the engine speed is high, it decreases the duty cycle to less than 50% to close the IAC. An old-fashioned dwell meter can be used to check the change: I haven’t tried it personally, but it should work. In theory, it should read ½ scale of whatever range you set it on with a 50% duty cycle. An Oscilloscope is even better if you can find someone who has one and will help.

attachment.php?attachmentid=58887&stc=1&d=1247241098.gif


Recommended procedure for cleaning the IAC/IAB:
Conventional cleaning methods like throttle body cleaner aren’t very effective. The best method is a soak type cleaner used for carburetors. If you are into fixing motorcycles, jet skis, snowmobiles or anything else with a small carburetor, you probably have used the one gallon soak cleaners like Gunk or Berryman. One of the two should be available at your local auto parts store for $22-$29. Take the solenoid off the body and set it aside: the carb cleaner will damage some types of plastic parts. Soak the metal body in the carb cleaner overnight. There is a basket to set the parts in while they are soaking. When you finish soaking overnight, twist the stem of the IAB/IAC that sticks out while the blocker valve is seated. This removes any leftover deposits from the blocker valve seat. Rinse the part off with water and blow it dry with compressed air. The IAC/IAB should seal up nicely now. Once it has dried, try blowing through the bottom hole and it should block the air flow. Reassemble and reinstall to check it out.

Gunk Dip type carb & parts soaker:
21hb0QWbOeL._SL500_AA300_.jpg



Setting the base idle speed:
First of all, the idle needs to be adjusted to where the speed is at or below 600 RPM with the IAC disconnected. If you have a wild cam, you may have to raise this figure 100-150 RPM or so. Then the electrical signal through the IAC can vary the airflow through it under computer control. Remember that the IAC can only add air to increase the base idle speed set by the mechanical adjustment. The 600 RPM base idle speed is what you have after the mechanical adjustment. The IAC increases that speed by supplying more air under computer control to raise the RPM’s to 650-725 RPM’s. This figure will increase if you have a wild cam, and may end up between 800-950 RPM

Remember that changing the mechanical idle speed adjustment changes the TPS setting too.

This isn't the method Ford uses, but it does work. Do not attempt to set the idle speed until you have fixed all the codes and are sure that there are no vacuum leaks.

Disconnect the battery negative terminal and turn the headlights on. Leave the battery negative terminal disconnected for 5 minutes or so. Then turn the headlights off and reconnect the battery. This erases the computer settings that may affect idle performance.

Warm the engine up to operating temperature, place the transmission in neutral, and set the parking brake. Turn off lights, A/C, all unnecessary electrical loads. Disconnect the IAC electrical connector. Remove the SPOUT plug. This will lock the ignition timing so that the computer won't change the spark advance, which changes the idle speed. Note the engine RPM: use the mechanical adjustment screw under the throttle body to raise or lower the RPM until you get the 600 RPM mark +/- 25 RPM. A wild cam may make it necessary to increase the 600 RPM figure to 700 RPM or possibly a little more to get a stable idle speed.
Changing the mechanical adjustment changes the TPS, so you will need to set it.

When you are satisfied with the results, turn off the engine, and re-install the SPOUT and reconnect the IAC. The engine should idle with the range of 650-750 RPM without the A/C on or extra electrical loads. A wild cam may make this figure somewhat higher.

An engine that whose idle speed cannot be set at 600 RPM with the IAC disconnected has mechanical problems. Vacuum leaks are the #1 suspect in this case. A vacuum gauge will help pinpoint both vacuum leaks and improperly adjusted valves. A sticking valve or one adjusted too tight will cause low vacuum and a 5"-8" sweep every time the bad cylinder comes up on compression stroke. An extreme cam can make the 600 RPM set point difficult to set. Contact your cam supplier or manufacturer to get information on idle speed and quality


Code 13
Key On Engine Off - ISC did not respond properly (extends to touch throttle then retracts for KOEO) – ISC

Key On Engine Running - Idle Speed Control motor or Air Bypass not controlling idle properly (generally idle too high)

If your idle is above 725 RPM, the computer will set this code. Normal idle speed is 650-725 RPM. Higher than that means that someone has mechanically set the idle speed by use of the idle speed screw, and has effectively disabled to computer’s ability to control idle speed.



Code 19 Engine running - Erratic idle during test (reset throttle & retest) - Idle Set Procedures .
See http://www.stangnet.com/mustang-forums/698148-help-me-create-surging-idle-checklist.html#post6855020 for the best way to set the mechanical base idle and cleaning procedure for the IAC/IAB.


Code 14 - Ignition pickup (PIP) was erratic – the Hall Effect sensor in the distributor is failing. Bad sensor, bad wiring, dirty contacts. Factory tach will sometimes read erratically.

Revised 10-Dec-2012 to add PIP diagnostic testing & Wells info

The PIP is a Hall Effect magnetic sensor that triggers the TFI and injectors. There is a shutter wheel alternately covers and uncovers a fixed magnet as it rotates. The change in the magnetic field triggers the sensor. They are often heat sensitive, increasing the failure rate as the temperature increases.

PIP Sensor functionality, testing and replacement:
The PIP is a Hall Effect magnetic sensor that triggers the TFI and injectors. There is a shutter wheel alternately covers and uncovers a fixed magnet as it rotates. The change in the magnetic field triggers the sensor. A failing PIP sensor will often set code 14 in the computer. They are often heat sensitive, increasing the failure rate as the temperature increases.

Some simple checks to do before replacing the PIP sensor or distributor:
You will need a Multimeter or DVM with good batteries: test or replace them before you get started.. You may also need some extra 16-18 gauge wire to extend the length of the meter’s test leads.
Visual check first: look for chaffed or damaged wiring and loose connector pins in the TFI harness connector.
Check the IDM wiring – dark green/yellow wire from the TFI module to pin 4 on the computer. There is a 22K Ohm resistor in the wiring between the TFI and the computer. Use an ohmmeter to measure the wire resistance from the TFI to the computer. You should see 22,000 ohms +/- 10%.
Check the PIP wiring - dark blue from the TFI module to pin 56 on the computer. Use an ohmmeter to measure the wire resistance from the TFI to the computer. You should see 0.2-1.5 ohms.
Check the SPOUT wiring – yellow/lt green from the TFI module to pin 36 on the computer. Use an ohmmeter to measure the wire resistance from the TFI to the computer. You should see 0.2-1.5 ohms.
Check the black/orange wire from the TFI module to pin 16 on the computer. Use an ohmmeter to measure the wire resistance from the TFI to the computer. You should see 0.2-1.5 ohms.
Check the red/green wire; it should have a steady 12-13 volts with the ignition switch on and the engine not running.
Check the red/blue wire; it should have a steady 12-13 volts with the ignition switch in Start and the engine not running. Watch out for the fan blades when you do this test, since the engine will be cranking.
If you do not find any chaffed or broken wires, high resistance connections or loose pins in the wiring harness, replace the PIP sensor or the distributor.

The PIP sensor is mounted in the bottom of the distributor under the shutter wheel. In stock Ford distributors, you have to press the gear off the distributor shaft to get access to it to replace it. Most guys just end up replacing the distributor with a reman unit for about $75 exchange

PIP problems & diagnostic info
Spark with the SPOUT out, but not with the SPOUT in suggests a PIP problem. The PIP signal level needs to be above 6.5 volts to trigger the computer, but only needs to be 5.75 volts to trigger the TFI module. Hence with a weak PIP signal, and the SPOUT out, you could get spark but no injector pulse. You will need an oscilloscope or graphing DVM to measure the output voltage since it is not a straight DC voltage.

See http://www.wellsmfgcorp.com/pdf/counterp_v8_i2_2004.pdf and http://www.wellsmfgcorp.com/pdf/counterp_v8_i3_2004.pdf for verification of this little detail from Wells, a manufacturer of TFI modules and ignition system products.
 
  • Like
Reactions: 1 user
BtW, factory spark plug gap is 0.054"-0.058". Yours is a bit tight, so you can open it up a tad.

Also, TPS is non adjustable. Spec is 0.5v - 1.19v. It baselines idle voltage each time you start the car so no need to adjust anything to 0.9999v. That myth really needs to be put to rest.


I'd probably try a fuel pressure regulator before dropping the tank and changing out a pump.
 
  • Like
Reactions: 1 user
BtW, factory spark plug gap is 0.054"-0.058". Yours is a bit tight, so you can open it up a tad.

Also, TPS is non adjustable. Spec is 0.5v - 1.19v. It baselines idle voltage each time you start the car so no need to adjust anything to 0.9999v. That myth really needs to be put to rest.


I'd probably try a fuel pressure regulator before dropping the tank and changing out a pump.

Thanks for the heads up. Is there a way to confirm if it's the pressure regulator?
 
Cycle key a few times. Does pressure build?

There's a check valve in the fuel pump that usually fails. When pump turns off or finishes its cycle, a failed check valve allows pressure to drop to 0 fast. As a result, might take a few cycles of the key to build pressure.
 
Check fuel pressure:
The local auto parts store may rent or loan a fuel pressure test gauge if you don't have one.
Disconnect the vacuum line from the fuel pressure regulator. Check it for evidence of fuel present in the line by removing it and blowing air through it. If you find fuel, the fuel pressure regulator has failed. Reinstall the line; leave the fuel pressure regulator end of the vacuum line disconnected. Then cap or plug the open end of the vacuum line and stow it out of the way.
Connect the fuel pressure test gauge to the Schrader port located just behind the alternator.
Turn the ignition switch on & start the engine. Observe the pressure: you should see 38-41 PSI at idle.
Turn the ignition off; reconnect the vacuum line to the fuel pressure regulator. Then disconnect the fuel pressure test gauge. Watch out for squirting gas when you do this.

Fuel pump pressure test
Disconnect the larger of the two fuel lines up by the Schrader valve. It is the return line and does not have the Schrader valve on it. Find a piece of rubber fuel hose and clamp it on the return line coming from the regulator. Stick a bolt in the other end of the hose and make sure that all your connections are tight and leak proof as possible. When this powers up, you don't want fuel squirting everywhere. Hook up the fuel pressure test gauge. Turn the ignition switch on and watch for leaks. You may want to use a helper inside the car to cut the switch off quickly if you have a leak. To trick the fuel pump into running, find the ECC test connector and jump the connector in the Upper RH corner to ground.

attachment.php?attachmentid=68357&stc=1&d=1322348015.gif


Caution!!! You have blocked the return line for the fuel pump! Pressure will rise very quickly past safe levels with a good pump
If the pressure goes up past 55 PSI, the pump is good and the fuel pressure regulator is bad. If the fuel pressure does not hit 55 PSI or more in a few seconds, the pump is bad or you have electrical problems.
 
Hello,

I took the plunge and replaced the fuel pump (first time for everything) with the help from my wifey (needed a second set of hands for install). The car purrs and runs like it should. What a difference a new pump makes (started right up). Thanks to all for your helpful comments.