Black Smoke when accelerating hard

yo yo yo Heavy D. Now HE could eat some Doritos. Saw him pound 4 bags once.

images?q=tbn:ANd9GcQ9Uq4qanaQHohGGI8bKjEz5H9Mn2RE0zZxh17x-d_0itlhlR6KaA
The over weight lovers in the house !
 
  • Sponsors (?)


I was legitimately asking how you surmised that that's what it was there is no need to get defensive about it I do this stuff everyday for a living I am a heavy diesel mechanic

I have no idea where you saw me getting defensive. Just answering your question you asked. Do I need to put a smiley on the end so you (and whoever else) know I am not mad? :) Lol Now I am just being a smart ass, but I honestly wasn't getting defensive. I took it out last week, got on it pretty hard and it doesn't smoke anymore. My oil leak was bad, but just wasn't draining it all in minutes. It was bad enough to have it run down my flywheel when I loosened it, and I always had a drip under the bellhousing waiting to fall, every time I climbed under it.
 
I didn't get out to pull codes last weekend due to work but got them today, I got 33, and 46. 33 says the EGR valve is not opening, and 46 is Thermactor Air System unable to bypass air( vent to atmosphere). If the EGR isn't opening will that cause the black smoke and if it will can the EGR be cleaned out or is it better to just replace it?
 
In that case...I'm claiming intake gasket leak. Only $12 in parts and a quick afternoon of fun. Let me know if my random guess was close? I have no accountibility. I'm an internet personality with an avatar that causes members to ask me on dates repeatedly.



(The above was a joke. OP, please don't change your intake gasket)
I wish I had the money to just throw at it, my wife has MS and with all her meds. I don't have enough money to do what I would like to do with the car, I'd like a new motor but due to money being VERY tight I had to go with a used block from Craigslist.
 
I checked out my extra parts and found an EGR valve that was on the engine I bought, I only used the short block because my intake was ported for my 65mm TB, I'll take it off and swap the two out hopefully tomorrow. I started the car for the 1st time in about 4-5 months today and the exhaust was blowing out some moisture and when it dried it left black spots on the ground, it did not smell like fuel or antifreeze, I'm hoping it was just condensation that collected in the exhaust system. Any ideas?
 
Condensation happens when you don't drive the car to get the whole exhaust system hot all the way to the tailpipe.

What codes did you get? Fix anything that does not involve the EGR before you get all tired and dirty for nothing.
 
I didn't get out to pull codes last weekend due to work but got them today, I got 33, and 46. 33 says the EGR valve is not opening, and 46 is Thermactor Air System unable to bypass air( vent to atmosphere). If the EGR isn't opening will that cause the black smoke. ..............I do not have cats on the car, just an H pipe, no smog tests needed here in Michigan.
 
The EGR code has nothing to do with the black smoke.

Code 33 - Insufficient EGR flow detected.
Look for vacuum leaks, cracked vacuum lines, failed EGR vacuum regulator. Check to see if you have 10” of vacuum at the EGR vacuum connection coming from the intake manifold. Look for electrical signal at the vacuum regulator solenoid valves located on the rear of the passenger side wheel well. Using a test light across the electrical connector, it should flicker as the electrical signal changes. Remember that the computer does not source any power, but provides the ground necessary to complete the circuit. That means one side of the circuit will always be hot, and the other side will go to ground or below 1 volt as the computer switches on that circuit.
Check for resistance between the brown/lt green wire on the EGR sensor and pin 27 on the computer: you should have less than 1.5 ohm.

Backside view of the computer wiring connector:
a9x-series-computer-connector-wire-side-view-gif.71316


See the following website for some help from Tmoss (diagram designer) & Stang&2Birds (website host)

http://www.veryuseful.com/mustang/tech/engine/images/fuel-alt-links-ign-ac.gif

http://www.veryuseful.com/mustang/tech/engine/images/88-91eecPinout.gif


EGR test procedure courtesy of cjones

to check the EGR valve:
bring the engine to normal temp.

connect a vacuum pump to the EGR Valve or see the EGR test jig drawing below. Connnect the test jig or to directly to manifold vacuum.

Do not connect the EGR test jig to the EVR (Electronic Vacuum Regulator).


apply 5in vacuum to the valve. Using the test jig, use your finger to vary the vacuum

if engine stumbled or died then EGR Valve and passage(there is a passageway through the heads and intake) are good.

if engine did NOT stumble or die then either the EGR Valve is bad and/or the passage is blocked.

if engine stumbled, connect EGR test jig to the hose coming off of the EGR Valve.
Use your finger to cap the open port on the vacuum tee.
snap throttle to 2500 RPM (remember snap the throttle don't hold it there).
did the vacuum gauge show about 2-5 in vacuum?
if not the EVR has failed

EGR test jig
egr-test-jig-gif.58022


The operation of the EGR vacuum regulator can be checked by using a test light applied across the wiring connector. Jumper the computer into self test mode and turn the key on but do not start the engine. You will hear all the actuators (including the EVR vacuum regulator) cycle. Watch for the light to flicker: that means the computer has signaled the EGR vacuum regulator successfully.


Since you don't have cat converters, I would advise you to re-route the belt to bypass the smog pump.
That will save you the trouble of chasing the code 46 since I don't have a test path written up for it.

If you really want to fix the code 46 (I don't think it fix the black smoke either) post a request or PM and I will create the test path and how to fix it.

If that isn't an option, here's how it works...

Thermactor Air System
Some review of how it works...

Revised 17-Sept-2011 to add testing procedure.

The Thermactor air pump (smog pump) supplies air to the heads or catalytic converters. This air helps break down the excess HC (hydrocarbons) and CO (carbon monoxide). The air supplied to the catalytic converters helps create the catalytic reaction that changes the HC & CO into CO2 and water vapor. Catalytic converters on 5.0 Mustangs are designed to use the extra air provided by the smog pump. Without the extra air, the catalytic converters will clog and fail.

The Thermactor air pump draws air from an inlet filter in the front of the pump. The smog pump puts air into the heads when the engine is cold and then into the catalytic converters when it is warm. The Thermactor control valves serve to direct the flow. The first valve, TAB (Thermactor Air Bypass) or AM1 valve) either dumps air to the atmosphere or passes it on to the second valve. The second valve, TAD (Thermactor Air Diverter valve or AM2 valve) directs it to the heads or the catalytic converters. Check valves located after the TAB & TAD solenoids prevent hot exhaust gases from damaging the control valves or pump in case of a backfire. The air serves to help consume any unburned hydrocarbons by supplying extra oxygen to the catalytic process. The computer tells the Thermactor Air System to open the Bypass valve at WOT (wide open throttle) minimizing engine drag. This dumps the pump's output to the atmosphere, and reduces the parasitic drag caused by the smog pump to about 2-4 HP at WOT. The Bypass valve also opens during deceleration to reduce or prevent backfires.

Code 44 RH side air not functioning.
Code 94 LH side air not functioning.

The computer uses the change in the O2 sensor readings to detect operation of the Thermactor control valves. When the dump valve opens, it reduces the O2 readings in the exhaust system. Then it closes the dump valve and the O2 readings increase. By toggling the dump valve (TAB), the computer tests for the 44/94 codes.

Failure mode is usually due to a clogged air crossover tube, where one or both sides of the tube clog with carbon. The air crossover tube mounts on the back of the cylinder heads and supplies air to each of the Thermactor air passages cast into the cylinder heads. When the heads do not get the proper air delivery, they set codes 44 & 94, depending on which passage is clogged. It is possible to get both 44 & 94, which would suggest that the air pump or control valves are not working correctly, or the crossover tube is full of carbon or missing.


thermactor-air-system-65-gif.50636



Computer operation & control for the Thermactor Air System
Automobile computers use current sink technology. They do not source power to any relay, solenoid or actuator like the IAC, fuel pump relay, or fuel injectors. Instead the computer provides a ground path for the positive battery voltage to get back to the battery negative terminal. That flow of power from positive to negative is what provides the energy to make the IAC, fuel pump relay, or fuel injectors work. No ground provided by the computer, then the actuators and relays don't operate.

One side of the any relay/actuator/solenoid in the engine compartment will be connected to a red wire that has 12-14 volts anytime the ignition switch is in the run position. The other side will have 12-14 volts when the relay/actuator/solenoid isn't turned on. Once the computer turns on the clamp side, the voltage on the computer side of the wire will drop down to 1 volt or less.

In order to test the TAD/TAB solenoids, you need to ground the white/red wire on the TAB solenoid or the light green/black wire on the TAD solenoid.

For 94-95 cars: the colors are different. The White/Red wire (TAB control) is White/Orange (Pin 31 on the PCM). The Green/Black wire (TAD control) should be Brown (pin 34 at the PCM). Thanks to HISSIN50 for this tip.

Testing the system:

To test the computer, you can use a test light across the TAB or TAD wiring connectors and dump the codes. When you dump the codes, the computer does a self test that toggles every relay/actuator/solenoid on and off. When this happens, the test light will flicker.

Disconnect the big hose from smog pump: with the engine running you should feel air output. Reconnect the smog pump hose & apply vacuum to the first vacuum controlled valve: Its purpose is to either dump the pump's output to the atmosphere or pass it to the next valve.

The next vacuum controlled valve directs the air to either the cylinder heads when the engine is cold or to the catalytic converter when the engine is warm. Disconnect the big hoses from the back side of the vacuum controlled valve and start the engine. Apply vacuum to the valve and see if the airflow changes from one hose to the next.

The two electrical controlled vacuum valves mounted on the rear of the passenger side wheel well turn the vacuum on & off under computer control. Check to see that both valves have +12 volts on the red wire. Then ground the white/red wire and the first solenoid should open and pass vacuum. Do the same thing to the light green/black wire on the second solenoid and it should open and pass vacuum.

Remember that the computer does not source power for any actuator or relay, but provides the ground necessary to complete the circuit. That means one side of the circuit will always be hot, and the other side will go to ground or below 1 volt as the computer switches on that circuit.

The computer provides the ground to complete the circuit to power the solenoid valve that turns the
vacuum on or off. The computer is located under the passenger side kick panel. Remove the kick panel & the cover over the computer wiring connector pins. Check Pin 38 Solenoid valve #1 that provides vacuum to the first Thermactor control valve for a switch from 12-14 volts to 1 volt or less. Do the same with pin 32 solenoid valve #2 that provides vacuum to the second Thermactor control valve. Starting the engine with the computer jumpered to self test mode will cause all the actuators to toggle on and off. If after doing this and you see no switching of the voltage on and off, you can start testing the wiring for shorts to ground and broken wiring. An Ohm check to ground with the computer connector disconnected & the solenoid valves disconnected should show open circuit between the pin 32 and ground and again on pin 38 and ground. In like manner, there should be less than 1 ohm between pin 32 and solenoid valve #2 and pin 38 & Solenoid valve #1.

If after checking the resistance of the wiring & you are sure that there are no wiring faults, start looking at the solenoid valves. If you disconnect them, you can jumper power & ground to them to verify operation. Power & ground supplied should turn on the vacuum flow, remove either one and the vacuum should stop flowing.

Typical resistance of the solenoid valves is in the range of 20-70 Ohms.

Theory of operation:
Catalytic converters consist of two different types of catalysts: Reduction and Oxidation.
The Reduction catalyst is the first converter in a 5.0 Mustang, and the Oxidation converter is the second converter. The Oxidation converter uses the extra air from the smog pump to burn the excess HC. Aftermarket converters that use the smog pump often combine both types of catalysts in one housing. Since all catalytic reactions depend on heat to happen, catalytic converters do not work as efficiently with long tube headers. The extra length of the long tubes reduces the heat available to operate the O2 sensors and the catalytic converters. That will cause emissions problems, and reduce the chances of passing an actual smog test.


Now for the Chemistry...
"The reduction catalyst is the first stage of the catalytic converter. It uses platinum and rhodium to help reduce the NOx emissions. When an NO or NO2 molecule contacts the catalyst, the catalyst rips the nitrogen atom out of the molecule and holds on to it, freeing the oxygen in the form of O2. The nitrogen atoms bond with other nitrogen atoms that are also stuck to the catalyst, forming N2. For example:

2NO => N2 + O2 or 2NO2 => N2 + 2O2

The oxidation catalyst is the second stage of the catalytic converter. It reduces the unburned hydrocarbons and carbon monoxide by burning (oxidizing) them over a platinum and palladium catalyst. This catalyst aids the reaction of the CO and hydrocarbons with the remaining oxygen in the exhaust gas. For example:

2CO + O2 => 2CO2

There are two main types of structures used in catalytic converters -- honeycomb and ceramic beads. Most cars today use a honeycomb structure." Quote courtesy of How Stuff Works (HowStuffWorks "Catalysts")

What happens when there is no extra air from the smog pump...
As engines age, the quality of tune decreases and wear causes them to burn oil. We have all seem cars that go down the road puffing blue or black smoke from the tailpipe. Oil consumption and poor tune increase the amount of HC the oxidation catalyst has to deal with. The excess HC that the converters cannot oxidize due to lack of extra air becomes a crusty coating inside the honeycomb structure. This effectively reduces the size of the honeycomb passageways and builds up thicker over time and mileage. Continuous usage under such conditions will cause the converter to fail and clog. The extra air provided by the Thermactor Air System (smog pump) is essential for the oxidation process. It oxidizes the added HC from oil consumption and poor tune and keeps the HC levels within acceptable limits.

Newer catalytic converters do not use the Thermactor Air System (smog pump) because they are designed to work with an improved computer system that runs leaner and cleaner
They add an extra set of O2 sensors after the catalytic converters to monitor the oxygen and HC levels. Using this additional information, the improved computer system adjusts the air/fuel mixture for cleaner combustion and reduced emissions. If the computer cannot compensate for the added load of emissions due to wear and poor tune, the catalytic converters will eventually fail and clog. The periodic checks (smog inspections) are supposed to help owners keep track of problems and get them repaired. Use them on an 86-95 Mustang and you will slowly kill them with the pollutants that they are not designed to deal with.
 
Since I don't have cats on my exhaust can I just remove the smog pump or unhook the hose from it so it doesn't pump in more air?
That's possible.

That's why I recommended the short belt. It bypasses the smog pump, and saves you all the trouble of removing it. If emissions testing come to your area, or you sell the car in an area that does test emissions, it is a simple job to rerun the belt and fix the code 46 and absence of cat converters.
 
The pipe on the back of the block was about full of crap ( black soot) when I got the motor, I did clean it and the block out before dropping the motor in, I scrapped most of it out and then used compressed air and carb cleaner to clean it completely, some of that junk might have made it's way to the EGR so I'm thinking it might need to be cleaned or swapped. I will check and see if I have another set of air valves and try swapping them, I'd rather leave everything hooked up in place if I can, this is a 1 owner car I bought in 89 so I'd like to keep it close to OE rather than going with the short belt, I still have the OE pipe with cats so if I ever need it I can put it on quickly, I don't plan on EVER selling the car. It did run fine with everything still connected to the OE motor before the crank broke, still runs good but black smoke looks bad.
 
The EGR problem is because it isn't opening like it should. That means vacuum problems, a bad sensor or the EGR signal isn't getting to the computer. Go back and re-read the code 33 Test path description and follow it to fix the problem.