TKO install problems

Low-5.0 said:
Replaced the driveshaft and the vibration is still there. :( I really thought that was going to fix it since I found out my stock ds was bent too. So, what's next on the list? Im thinking it may be the pinion angle, but how do I adjust that? Will changing the rear springs change the pinion angle? Cuz I can throw my stock springs on to see if that helps...

Do you have adjustable upper control arms?

I fixed ALL my vibration problems with a CORRECT length drive shaft (for my car 46.5") and matched or "zeroed out" my driveline angles with my adjustable uppers. No vibrations all the way to 5500 in fifth.:nice:
 
  • Sponsors (?)


Low-5.0 said:
95Vert354, No I don't have adjustable UCA's. How do you "zero out" the driveline anlges?

BDAWK2002, Yes my crossmember is in correctly.

You want the same angle at each end of the driveshaft. this keeps it in "phase". I've learned more about this in the last few weeks than I care to, but I had to get rid of that damn vibration:mad: . It was ruining the whole driving experience of the car. You should really get rid of the driveshft spacer and have a new shaft made to the correct length,mine was 46 1/2" (NOT 5/8
longer). You can either have your yokes welded on a new tube or just have a new aluminum shaft made. A local shop made my new 4' aluminum, from parts he had laying around for $170 bucks. I really think you will need adjustable uppers to get the same angle at the rear as you have at the trans, the tko's are a different height than the t-5, even if you put spacers in between the mount and the trans and got it all the way to the top of the tunnel, your trans will still be at a downward angle of 2-4 degrees, wich means your pinion would have to be pointed up 2-4 degrees. I dont know what the factory control arms are setting it at, thus the need for adjustable uppers. I have the UPR pro set up. Heres a write up better explaining it.

The Straight Scoop on Pinion Angles

by Ron Rygelski
Performance Products-Red Line Synthetic Oil
http://www.myoilshop.com
(formerly www.redlineoilracing.com)
[email protected]



Myth #1: The pinion angle somehow affects how much traction the car
will achieve.

Straight Scoop: No way. The pinion angle doesn't mean squat as far
as the rear suspension is concerned. Think about it: why would the
suspension care about u-joint angles? What determines the "hit" on
the rear tires and the rate and amount of weight transfer is the
intersect point of the upper and lower rear bars (control arms).
That's known as the "instant center" (IC), and combined with weight
distribution, spring rates, and shock valving is what affects
traction.

Myth #2: You increased the pinion angle and the result was increased
traction, so Myth #1 must be correct.

Straight Scoop: You haven't been listening. Pinion angle doesn't
affect traction. What happened is you shortened the length of the
upper bars and that changed the intersect point, moving the IC
farther forward. You also screwed up the pinion angle in the
process.
If you want to change the length of the upper or lower
bars, or change their mounting points, that's fine. But after you're
done you've got to go back and check and properly reset the pinion
angle.


Myth #3: The garage floor is the correct reference point for
measuring the pinion angle.

Straight Scoop: You've got to be kidding, right? The garage floor
doesn't have anything to do with anything. What's important is the
drivetrain angle.
It so happens that professionally built racecars
are constructed so that the crankshaft is parallel to the floor,
meaning that the transmission output shaft will also be parallel to
the floor. But this usually doesn't hold true for cars using a
factory chassis. In most of those cases the engine is tipped
rearward.
Take a look under the hood of your Buick and you'll see
what I mean. The drivetrain angle is the reference point and is
considered to be zero.


How to Measure It: The best way to do this is with the car supported
on jackstands, with stands under the front control arms and rear axle
tubes, with the full weight of the car resting on the stands. Next,
it's best to remove the driveshaft. Using an angle finder (these are
available from Competition Engineering or at Sears Hardware stores--
they're a commonly used carpenters tool), measure across the surface
of the rear transmission seal vertically(see illustration 1). This
surface is perpendicular to the output shaft of the trans, so
subtract the measurement from 90 to get the drivetrain angle. Let's
say that the measurement is -2 degrees(pointed down). That is our
reference point. Look at illustration #3. The pinion angle is the
difference in the angle of the rearend to the angle of the
drivetrain. So, in order to have zero pinion angle, the rearend
would have to be tipped upward (pinion yoke pointing upward) 2
degrees.
If our drivetrain angle measured -5 degrees, we'd have to
tip the rearend upward 5 degrees to have zero pinion angle. Get it?
Now turn the pinion yoke so that the u-joint cups are sideways, and
measure across one side of the pinion yoke vertically(see
illustration 1) where the u-joint strap connects. Again, this
surface is perpendicular to the pinion, so subtract the measurement
from 90 to get the rearend angle. compare this number to the
drivetrain angle to get the pinion angle. If the drivetrain angle
was -2 degrees(pointed down), and the rearend angle measured +1
degrees(pointed up), then the pinion angle would be -1 degree. If
the drivetrain angle had measured -2 degrees (pointed down) and the
rearend angle had measured -3 degrees (pointed down) then the pinion
angle would be -5 degrees. In my particular case, the drivetrain
angle measured -4 degrees, and the rearend angle measured -6 degrees,
resulting in a pinion angle of -10 degrees, a wasted tailshaft
bushing, and a slower than necessary racecar. The idea is to have
the pinion angle at zero with the racecar under power and going down
the track. To allow for suspension movement and loading, the pinion
angle should be at around -2 degrees for our cars.


Illustration 1





Illustration 2





Illustration 3






How to Adjust It: You can purchase adjustable upper or lower control
arms from a variety of sources, or you can weld washers to the
factory control arms and re-drill the pivot holes in a new location,
or you can cut and weld the factory control arms.

How important is all of this: Well, excessive pinion angle can bind
the u-joints up pretty good and rob quite a bit of horsepower. It's
not at all unusual for a car to pick up 2-3 tenths and as many mph
after getting this straightened out. Also, excessive pinion angle is
often the real culprit behind broken parts. Racers love to attribute
busted driveshafts, exploded tailshafts, and cracked bellhousing to
the raw torque and horsepower produced by their motors, when in fact
it's usually a problem with driveline geometry. It's definitely
worth checking before you break something expensive. See you in the
lanes!!


Sorry, the illustrations didn't show up. here's the link

http://buickperformance.com/Pinion.htm
 
Wow, that's a nice writeup! Thanks! I know my rear pinion angle is different from the front just from looking at it. And I just had a custom 3" steel driveshaft made at stock + 5/8" length. I measured it the way the shop told me too and it came out to 5/8" longer than stock.

What rear setup is it where you remove the UCA's? Is that with a torque arm? I've been thinking about replacing my entire suspension and I want to make sure I do it right this time around.
 
Your welcome,I know how frustrating it is. I just spent over 17k on this car and to have a damn vibration like that was driving me nuts:bang:

I really dont know much about torque arm set ups:shrug: I just like the stock four link and went with the UPR pro set up with eiback proline springs and Tokico Illumna adjustable struts and shocks. 275/40/17 Rikens all the way around on cobra R's., with an extra set for my ET streets. Rides great, hooks up decent,1.60 60' on good track.:SNSign:
 
BDAWK2002 said:
All this write up about the control arms sounds real good but I'll believe it when someone on here who has been dealing with the vibration actually does it and it works.

I'm on here, I have been dealing with it,I tried it, it worked! What part don't you believe?

95vert354 said:
Do you have adjustable upper control arms?

I fixed ALL my vibration problems with a CORRECT length drive shaft (for my car 46.5") and matched or "zeroed out" my driveline angles with my adjustable uppers. No vibrations all the way to 5500 in fifth.:nice:
 
mytight95 said:
low i have a set of adjustable uppers for sale if you want them, have 50 miles on them, from blue oval industries


jason

Let me know how much you want for them. My email is mike.edgar at gmail.com
Thanks! :)


BTW, I did some research and you need a torque arm and panhard bar to eliminate the UCA's. With a total of around $1000 from MM for just those two items I think I'll stick to the 4-link setup for now.
 
Low-5.0 said:
There's nothing left for me to try so that HAS to be it...

You don' need "luck", Just a proper driveline angle.:lol:

There's no "guessing" to it, it worked. You'll think the adjustable uppers were the best money you spent on the whole car.Post up after you try it, I want her about how relieved and happy you are:nice:
 
95vert354 said:
You don' need "luck", Just a proper driveline angle.:lol:

There's no "guessing" to it, it worked. You'll think the adjustable uppers were the best money you spent on the whole car.Post up after you try it, I want her about how relieved and happy you are:nice:
If it works you'll be the man.A lot of people have been trying to figure this out for a long time.I,ll be the first to nominate you for member of the year:hail2:
 
nmcgrawj said:
People have been talking about the driveline angles for a long time....just a matter of doing it. Post up your results bud :nice:

Thats the problem, everybody is trying to get the same size spacer under the tko ,that the t-5 had.BUT, the problem is the TKO has a shorter measurement from the output shaft centerline to the bottom of the mount. Therfore you need allot bigger spacer to get the TKO driveline angle up to the height of the T-5. as I stated before, even if you put enough spacer to raise it all the way to the top of the tunnel, the centerline of the output shaft still won't be as high as the T-5. Therefore you need to adjust your
pinion angle up to match it. It's as simple as that. I did it, it worked. I'll repeat, NO MORE VIBRATIONS all the way to 5500 in 5th.:SNSign:
 
I am not familiar with what you have tried or not tried (too lazy and too little time to reread the thread) but I flipped the crossmember, lengthened the holes a bit, used a 1/2 inch spacer, an energy suspension tranny mount along with the included plate, and then the hardcore driveshaft spacer from Steeda. No vibes at all at any RPM at any gear. Hope this helps??? :shrug:
 
I got the adjustable UCA's installed last night, but I failed to realize that you need to adjust them before installing...Doh! Anyways, I checked my pinion angle and Im geting around -4* at the tranny, and 0 at the rearend, which would be -5* driveline angle, right? It looks something like this, from the driver side

Trans--/----ds-----|-rearend

And I should adjust it to??

Trans-4-/-----ds----/+4-Rear

Which would mean I need to lengthen the control arms?